XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks

We propose two efficient approximations to standard convolutional neural networks: Binary-Weight-Networks and XNOR-Networks. In Binary-Weight-Networks, the filters are approximated with binary values resulting in 32x memory saving... (read more)

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
1x1 Convolution
Convolutions
Convolution
Convolutions
Local Response Normalization
Normalization
Grouped Convolution
Convolutions
ReLU
Activation Functions
Dropout
Regularization
Dense Connections
Feedforward Networks
Max Pooling
Pooling Operations
Softmax
Output Functions
AlexNet
Convolutional Neural Networks