Without-Replacement Sampling for Stochastic Gradient Methods: Convergence Results and Application to Distributed Optimization

NeurIPS 2016  ·  Ohad Shamir ·

Stochastic gradient methods for machine learning and optimization problems are usually analyzed assuming data points are sampled \emph{with} replacement. In practice, however, sampling \emph{without} replacement is very common, easier to implement in many cases, and often performs better. In this paper, we provide competitive convergence guarantees for without-replacement sampling, under various scenarios, for three types of algorithms: Any algorithm with online regret guarantees, stochastic gradient descent, and SVRG. A useful application of our SVRG analysis is a nearly-optimal algorithm for regularized least squares in a distributed setting, in terms of both communication complexity and runtime complexity, when the data is randomly partitioned and the condition number can be as large as the data size per machine (up to logarithmic factors). Our proof techniques combine ideas from stochastic optimization, adversarial online learning, and transductive learning theory, and can potentially be applied to other stochastic optimization and learning problems.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here