Wireless Traffic Prediction with Scalable Gaussian Process: Framework, Algorithms, and Verification

13 Feb 2019  ·  Yue Xu, Feng Yin, Wenjun Xu, Jia-Ru Lin, Shuguang Cui ·

The cloud radio access network (C-RAN) is a promising paradigm to meet the stringent requirements of the fifth generation (5G) wireless systems. Meanwhile, wireless traffic prediction is a key enabler for C-RANs to improve both the spectrum efficiency and energy efficiency through load-aware network managements. This paper proposes a scalable Gaussian process (GP) framework as a promising solution to achieve large-scale wireless traffic prediction in a cost-efficient manner. Our contribution is three-fold. First, to the best of our knowledge, this paper is the first to empower GP regression with the alternating direction method of multipliers (ADMM) for parallel hyper-parameter optimization in the training phase, where such a scalable training framework well balances the local estimation in baseband units (BBUs) and information consensus among BBUs in a principled way for large-scale executions. Second, in the prediction phase, we fuse local predictions obtained from the BBUs via a cross-validation based optimal strategy, which demonstrates itself to be reliable and robust for general regression tasks. Moreover, such a cross-validation based optimal fusion strategy is built upon a well acknowledged probabilistic model to retain the valuable closed-form GP inference properties. Third, we propose a C-RAN based scalable wireless prediction architecture, where the prediction accuracy and the time consumption can be balanced by tuning the number of the BBUs according to the real-time system demands. Experimental results show that our proposed scalable GP model can outperform the state-of-the-art approaches considerably, in terms of wireless traffic prediction performance.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods