When VLAD met Hilbert

Vectors of Locally Aggregated Descriptors (VLAD) have emerged as powerful image/video representations that compete with or even outperform state-of-the-art approaches on many challenging visual recognition tasks. In this paper, we address two fundamental limitations of VLAD: its requirement for the local descriptors to have vector form and its restriction to linear classifiers due to its high-dimensionality. To this end, we introduce a kernelized version of VLAD. This not only lets us inherently exploit more sophisticated classification schemes, but also enables us to efficiently aggregate non-vector descriptors (e.g., tensors) in the VLAD framework. Furthermore, we propose three approximate formulations that allow us to accelerate the coding process while still benefiting from the properties of kernel VLAD. Our experiments demonstrate the effectiveness of our approach at handling manifold-valued data, such as covariance descriptors, on several classification tasks. Our results also evidence the benefits of our nonlinear VLAD descriptors against the linear ones in Euclidean space using several standard benchmark datasets.

PDF Abstract CVPR 2016 PDF CVPR 2016 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here