Weak Form Generalized Hamiltonian Learning

11 Apr 2021  ·  Kevin L. Course, Trefor W. Evans, Prasanth B. Nair ·

We present a method for learning generalized Hamiltonian decompositions of ordinary differential equations given a set of noisy time series measurements. Our method simultaneously learns a continuous time model and a scalar energy function for a general dynamical system. Learning predictive models in this form allows one to place strong, high-level, physics inspired priors onto the form of the learnt governing equations for general dynamical systems. Moreover, having shown how our method extends and unifies some previous work in deep learning with physics inspired priors, we present a novel method for learning continuous time models from the weak form of the governing equations which is less computationally taxing than standard adjoint methods.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here