Waveforms and End-to-End Efficiency in RF Wireless Power Transfer Using Digital Radio Transmitter

2 Dec 2020  ·  Nachiket Ayir, Taneli Riihonen, Markus Allén, Marcelo Fabián Trujillo Fierro ·

We study radio-frequency (RF) wireless power transfer (WPT) using a digital radio transmitter for applications where alternative analog transmit circuits are impractical. An important paramter for assessing the viability of an RF WPT system is its end-to-end efficiency. In this regard, we present a prototype test-bed comprising a software-defined radio (SDR) transmitter and an energy harvesting receiver with a low resistive load; employing an SDR makes our research meaningful for simultaneous wireless information and power transfer (SWIPT). We analyze the effect of clipping and non-linear amplification at the SDR on multisine waveforms. Our experiments suggest that when the DC input power at the transmitter is constant, high peak-to-average power ratio (PAPR) multisine are unsuitable for RF WPT over a flat-fading channel, due to their low average radiated power. The results indicate that the end-to-end efficiency is positively correlated to the average RF power of the waveform, and that it reduces with increasing PAPR. Consequently, digital modulations such as phase-shift keying (PSK) and quadrature amplitude modeulation (QAM) yield better end-to-end efficiency than multisines. Moreover, the end-to-end efficiency of PSK and QAM signals is invariant of the transmission bit rate. An in-depth analysis of the end-to-end efficiency of WPT reveals that the transmitter efficiency is lower than the receiver efficiency. Furthermore, we study the impact of a reflecting surface on the end-to-end efficiency of WPT, and assess the transmission quality of the information signals by evaluating their error vector magnitude (EVM) for SWIPT. Overall, the experimental observations of end-to-end efficiency and EVM suggest that, while employing an SDR transmitter with fixed DC input power, a baseband quadrature PSK signal is most suitable for SWIPT at large, among PSK and QAM signals.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods