Wasserstein Dependent Graph Attention Network for Collaborative Filtering with Uncertainty

9 Apr 2024  ·  Haoxuan Li, Yuanxin Ouyang, Zhuang Liu, Wenge Rong, Zhang Xiong ·

Collaborative filtering (CF) is an essential technique in recommender systems that provides personalized recommendations by only leveraging user-item interactions. However, most CF methods represent users and items as fixed points in the latent space, lacking the ability to capture uncertainty. In this paper, we propose a novel approach, called the Wasserstein dependent Graph ATtention network (W-GAT), for collaborative filtering with uncertainty. We utilize graph attention network and Wasserstein distance to address the limitations of LightGCN and Kullback-Leibler divergence (KL) divergence to learn Gaussian embedding for each user and item. Additionally, our method incorporates Wasserstein-dependent mutual information further to increase the similarity between positive pairs and to tackle the challenges induced by KL divergence. Experimental results on three benchmark datasets show the superiority of W-GAT compared to several representative baselines. Extensive experimental analysis validates the effectiveness of W-GAT in capturing uncertainty by modeling the range of user preferences and categories associated with items.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods