WarpGAN: Automatic Caricature Generation

CVPR 2019  ·  Yichun Shi, Debayan Deb, Anil K. Jain ·

We propose, WarpGAN, a fully automatic network that can generate caricatures given an input face photo. Besides transferring rich texture styles, WarpGAN learns to automatically predict a set of control points that can warp the photo into a caricature, while preserving identity... We introduce an identity-preserving adversarial loss that aids the discriminator to distinguish between different subjects. Moreover, WarpGAN allows customization of the generated caricatures by controlling the exaggeration extent and the visual styles. Experimental results on a public domain dataset, WebCaricature, show that WarpGAN is capable of generating a diverse set of caricatures while preserving the identities. Five caricature experts suggest that caricatures generated by WarpGAN are visually similar to hand-drawn ones and only prominent facial features are exaggerated. read more

PDF Abstract CVPR 2019 PDF CVPR 2019 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here