VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection

Accurate detection of objects in 3D point clouds is a central problem in many applications, such as autonomous navigation, housekeeping robots, and augmented/virtual reality. To interface a highly sparse LiDAR point cloud with a region proposal network (RPN), most existing efforts have focused on hand-crafted feature representations, for example, a bird's eye view projection... (read more)

Results in Papers With Code
(↓ scroll down to see all results)