Viscoelasticity enables self-organization of bacterial active matter in space and time

31 Jul 2020  ·  Song Liu, Suraj Shankar, M. Cristina Marchetti, Yilin Wu ·

Active matter consists of units that generate mechanical work by consuming energy. Examples include living systems, such as assemblies of bacteria and biological tissues, biopolymers driven by molecular motors, and suspensions of synthetic self-propelled particles. A central question in the field is to understand and control the self-organization of active assemblies in space and time. Most active systems exhibit either spatial order mediated by interactions that coordinate the spatial structure and the motion of active agents or the temporal synchronization of individual oscillatory dynamics. The simultaneous control of spatial and temporal organization is more challenging and generally requires complex interactions, such as reaction-diffusion hierarchies or genetically engineered cellular circuits. Here, we report a novel and simple means to simultaneously control the spatial and temporal self-organization of bacterial active matter. By confining an active bacterial suspension and manipulating a single macroscopic parameter, namely the viscoelasticity of the suspending fluid, we have found that the bacterial fluid first self-organizes in space into a millimeter-scale rotating vortex; then displays temporal organization as the giant vortex switches its global chirality periodically with tunable frequency, reminiscent of a torsional pendulum - a self-driven one. Combining experiments with an active matter model, we explain this striking behavior in terms of the interplay between active forcing and viscoelastic stress relaxation. Our findings advance the understanding of bacterial behavior in complex fluids, and demonstrate experimentally for the first time that rheological properties can be harnessed to control active matter flows. Coupled with actuation, our tunable self-oscillating bacterial vortex may be used as a "clock" for locomotion of soft robots and microfluidic pumping.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Soft Condensed Matter Biological Physics Fluid Dynamics