VirtualFlow: Decoupling Deep Learning Model Execution from Underlying Hardware

20 Sep 2020 Andrew Or Haoyu Zhang Michael J. Freedman

State-of-the-art deep learning systems tightly couple model execution with the underlying hardware. This coupling poses important challenges in a world where the scale of deep learning workloads is growing rapidly: workloads with high resource requirements are inaccessible to most users, experimentation on smaller test beds is impossible, and results are difficult to reproduce across different hardware... (read more)

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper