Enhancing Visual Grounding and Generalization: A Multi-Task Cycle Training Approach for Vision-Language Models

21 Nov 2023  ·  Xiaoyu Yang, Lijian Xu, Hao Sun, Hongsheng Li, Shaoting Zhang ·

Visual grounding (VG) occupies a pivotal position in multi-modality vision-language models. In this study, we propose ViLaM, a large multi-modality model, that supports multi-tasks of VG using the cycle training strategy, with abundant interaction instructions. The cycle training between referring expression generation (REG) and referring expression comprehension (REC) is introduced. It enhances the consistency between visual location and referring expressions, and addresses the need for high-quality, multi-tasks VG datasets. Moreover, multi-tasks of VG are promoted in our model, contributed by the cycle training strategy. The multi-tasks in REC encompass a range of granularities, from region-level to pixel-level, which include referring bbox detection, referring keypoints detection, and referring image segmentation. In REG, referring region classification determines the fine-grained category of the target, while referring region captioning generates a comprehensive description. Meanwhile, all tasks participate in the joint training, synergistically enhancing one another and collectively improving the overall performance of the model. Furthermore, leveraging the capabilities of large language models, ViLaM extends a wide range of instructions, thereby significantly enhancing its generalization and interaction potentials. Extensive public datasets corroborate the superior capabilities of our model in VG with muti-tasks. Additionally, validating its robust generalization, ViLaM is validated under open-set and few-shot scenarios. Especially in the medical field, our model demonstrates cross-domain robust generalization capabilities. Furthermore, we contribute a VG dataset, especially with multi-tasks. To support and encourage the community focused on VG, we have made both the dataset and our code public: https://github.com/AnonymGiant/ViLaM.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods