Viability under Degraded Control Authority

23 Oct 2023  ·  Hamza El-Kebir, Richard Berlin, Joseph Bentsman, Melkior Ornik ·

In this work, we solve the problem of quantifying and mitigating control authority degradation in real time. Here, our target systems are controlled nonlinear affine-in-control evolution equations with finite control input and finite- or infinite-dimensional state. We consider two cases of control input degradation: finitely many affine maps acting on unknown disjoint subsets of the inputs and general Lipschitz continuous maps. These degradation modes are encountered in practice due to actuator wear and tear, hard locks on actuator ranges due to over-excitation, as well as more general changes in the control allocation dynamics. We derive sufficient conditions for identifiability of control authority degradation, and propose a novel real-time algorithm for identifying or approximating control degradation modes. We demonstrate our method on a nonlinear distributed parameter system, namely a one-dimensional heat equation with a velocity-controlled moveable heat source, motivated by autonomous energy-based surgery.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here