Versatile Single-Loop Method for Gradient Estimator: First and Second Order Optimality, and its Application to Federated Learning

1 Sep 2022  ·  Kazusato Oko, Shunta Akiyama, Tomoya Murata, Taiji Suzuki ·

While variance reduction methods have shown great success in solving large scale optimization problems, many of them suffer from accumulated errors and, therefore, should periodically require the full gradient computation. In this paper, we present a single-loop algorithm named SLEDGE (Single-Loop mEthoD for Gradient Estimator) for finite-sum nonconvex optimization, which does not require periodic refresh of the gradient estimator but achieves nearly optimal gradient complexity. Unlike existing methods, SLEDGE has the advantage of versatility; (i) second-order optimality, (ii) exponential convergence in the PL region, and (iii) smaller complexity under less heterogeneity of data. We build an efficient federated learning algorithm by exploiting these favorable properties. We show the first and second-order optimality of the output and also provide analysis under PL conditions. When the local budget is sufficiently large and clients are less (Hessian-)~heterogeneous, the algorithm requires fewer communication rounds then existing methods such as FedAvg, SCAFFOLD, and Mime. The superiority of our method is verified in numerical experiments.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here