Variational training of neural network approximations of solution maps for physical models

7 May 2019  ·  Yingzhou Li, Jianfeng Lu, Anqi Mao ·

A novel solve-training framework is proposed to train neural network in representing low dimensional solution maps of physical models. Solve-training framework uses the neural network as the ansatz of the solution map and train the network variationally via loss functions from the underlying physical models. Solve-training framework avoids expensive data preparation in the traditional supervised training procedure, which prepares labels for input data, and still achieves effective representation of the solution map adapted to the input data distribution. The efficiency of solve-training framework is demonstrated through obtaining solutions maps for linear and nonlinear elliptic equations, and maps from potentials to ground states of linear and nonlinear Schr\"odinger equations.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here