Variational Autoencoders for exteroceptive perception in reinforcement learning-based collision avoidance

31 Mar 2024  ·  Thomas Nakken Larsen, Eirik Runde Barlaug, Adil Rasheed ·

Modern control systems are increasingly turning to machine learning algorithms to augment their performance and adaptability. Within this context, Deep Reinforcement Learning (DRL) has emerged as a promising control framework, particularly in the domain of marine transportation. Its potential for autonomous marine applications lies in its ability to seamlessly combine path-following and collision avoidance with an arbitrary number of obstacles. However, current DRL algorithms require disproportionally large computational resources to find near-optimal policies compared to the posed control problem when the searchable parameter space becomes large. To combat this, our work delves into the application of Variational AutoEncoders (VAEs) to acquire a generalized, low-dimensional latent encoding of a high-fidelity range-finding sensor, which serves as the exteroceptive input to a DRL agent. The agent's performance, encompassing path-following and collision avoidance, is systematically tested and evaluated within a stochastic simulation environment, presenting a comprehensive exploration of our proposed approach in maritime control systems.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here