Utilizing Maximum Mean Discrepancy Barycenter for Propagating the Uncertainty of Value Functions in Reinforcement Learning

31 Mar 2024  ·  Srinjoy Roy, Swagatam Das ·

Accounting for the uncertainty of value functions boosts exploration in Reinforcement Learning (RL). Our work introduces Maximum Mean Discrepancy Q-Learning (MMD-QL) to improve Wasserstein Q-Learning (WQL) for uncertainty propagation during Temporal Difference (TD) updates. MMD-QL uses the MMD barycenter for this purpose, as MMD provides a tighter estimate of closeness between probability measures than the Wasserstein distance. Firstly, we establish that MMD-QL is Probably Approximately Correct in MDP (PAC-MDP) under the average loss metric. Concerning the accumulated rewards, experiments on tabular environments show that MMD-QL outperforms WQL and other algorithms. Secondly, we incorporate deep networks into MMD-QL to create MMD Q-Network (MMD-QN). Making reasonable assumptions, we analyze the convergence rates of MMD-QN using function approximation. Empirical results on challenging Atari games demonstrate that MMD-QN performs well compared to benchmark deep RL algorithms, highlighting its effectiveness in handling large state-action spaces.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods