Use of Deep Neural Networks for Uncertain Stress Functions with Extensions to Impact Mechanics

3 Nov 2023  ·  Garrett Blum, Ryan Doris, Diego Klabjan, Horacio Espinosa, Ron Szalkowski ·

Stress-strain curves, or more generally, stress functions, are an extremely important characterization of a material's mechanical properties. However, stress functions are often difficult to derive and are narrowly tailored to a specific material. Further, large deformations, high strain-rates, temperature sensitivity, and effect of material parameters compound modeling challenges. We propose a generalized deep neural network approach to model stress as a state function with quantile regression to capture uncertainty. We extend these models to uniaxial impact mechanics using stochastic differential equations to demonstrate a use case and provide a framework for implementing this uncertainty-aware stress function. We provide experiments benchmarking our approach against leading constitutive, machine learning, and transfer learning approaches to stress and impact mechanics modeling on publicly available and newly presented data sets. We also provide a framework to optimize material parameters given multiple competing impact scenarios.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here