Unpaired Image-to-Image Translation with Limited Data to Reveal Subtle Phenotypes

21 Jan 2023  ·  Anis Bourou, Auguste Genovesio ·

Unpaired image-to-image translation methods aim at learning a mapping of images from a source domain to a target domain. Recently, these methods proved to be very useful in biological applications to display subtle phenotypic cell variations otherwise invisible to the human eye. However, current models require a large number of images to be trained, while mostmicroscopy experiments remain limited in the number of images they can produce. In this work, we present an improved CycleGAN architecture that employs self-supervised discriminators to alleviate the need for numerous images. We demonstrate quantitatively and qualitatively that the proposed approach outperforms the CycleGAN baseline, including when it is combined with differentiable augmentations. We also provide results obtained with small biological datasets on obvious and non-obvious cell phenotype variations, demonstrating a straightforward application of this method.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods