Unpaired Brain MR-to-CT Synthesis using a Structure-Constrained CycleGAN

12 Sep 2018 Heran Yang Jian Sun Aaron Carass Can Zhao Junghoon Lee Zongben Xu Jerry Prince

The cycleGAN is becoming an influential method in medical image synthesis. However, due to a lack of direct constraints between input and synthetic images, the cycleGAN cannot guarantee structural consistency between these two images, and such consistency is of extreme importance in medical imaging... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
Batch Normalization
Normalization
Residual Connection
Skip Connections
PatchGAN
Discriminators
ReLU
Activation Functions
Tanh Activation
Activation Functions
Residual Block
Skip Connection Blocks
Instance Normalization
Normalization
Convolution
Convolutions
Leaky ReLU
Activation Functions
Sigmoid Activation
Activation Functions
GAN Least Squares Loss
Loss Functions
Cycle Consistency Loss
Loss Functions
CycleGAN
Generative Models