Unlocking Energy Flexibility From Thermal Inertia of Buildings: A Robust Optimization Approach

8 Dec 2023  ·  Yun Li, Neil Yorke-Smith, Tamas Keviczky ·

Towards integrating renewable electricity generation sources into the grid, an important facilitator is the energy flexibility provided by buildings' thermal inertia. Most of the existing research follows a single-step price- or incentive-based scheme for unlocking the flexibility potential of buildings. In contrast, this paper proposes a novel two-step design approach for better harnessing buildings' energy flexibility. In a first step, a robust optimization model is formulated for assessing the energy flexibility of buildings in the presence of uncertain predictions of external conditions, such as ambient temperature, solar irradiation, etc. In a second step, energy flexibility is activated in response to a feasible demand response (DR) request from grid operators without violating indoor temperature constraints, even in the presence of uncertain external conditions. The proposed approach is tested on a high-fidelity Modelica simulator to evaluate its effectiveness. Simulation results show that, compared with price-based demand-side management, the proposed approach achieves greater energy reduction during peak hours.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here