Univariate Radial Basis Function Layers: Brain-inspired Deep Neural Layers for Low-Dimensional Inputs

7 Nov 2023  ·  Daniel Jost, Basavasagar Patil, Xavier Alameda-Pineda, Chris Reinke ·

Deep Neural Networks (DNNs) became the standard tool for function approximation with most of the introduced architectures being developed for high-dimensional input data. However, many real-world problems have low-dimensional inputs for which standard Multi-Layer Perceptrons (MLPs) are the default choice. An investigation into specialized architectures is missing. We propose a novel DNN layer called Univariate Radial Basis Function (U-RBF) layer as an alternative. Similar to sensory neurons in the brain, the U-RBF layer processes each individual input dimension with a population of neurons whose activations depend on different preferred input values. We verify its effectiveness compared to MLPs in low-dimensional function regressions and reinforcement learning tasks. The results show that the U-RBF is especially advantageous when the target function becomes complex and difficult to approximate.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here