UNION: An Unreferenced Metric for Evaluating Open-ended Story Generation

Despite the success of existing referenced metrics (e.g., BLEU and MoverScore), they correlate poorly with human judgments for open-ended text generation including story or dialog generation because of the notorious one-to-many issue: there are many plausible outputs for the same input, which may differ substantially in literal or semantics from the limited number of given references. To alleviate this issue, we propose UNION, a learnable unreferenced metric for evaluating open-ended story generation, which measures the quality of a generated story without any reference... (read more)

PDF Abstract EMNLP 2020 PDF EMNLP 2020 Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper