Understanding Generalization via Set Theory

11 Nov 2023  ·  Shiqi Liu ·

Generalization is at the core of machine learning models. However, the definition of generalization is not entirely clear. We employ set theory to introduce the concepts of algorithms, hypotheses, and dataset generalization. We analyze the properties of dataset generalization and prove a theorem on surrogate generalization procedures. This theorem leads to our generalization method. Through a generalization experiment on the MNIST dataset, we obtain 13,541 sample bases. When we use the entire training set to evaluate the model's performance, the models achieve an accuracy of 99.945%. However, if we shift the sample bases or modify the neural network structure, the performance experiences a significant decline. We also identify consistently mispredicted samples and find that they are all challenging examples. The experiments substantiated the accuracy of the generalization definition and the effectiveness of the proposed methods. Both the set-theoretic deduction and the experiments help us better understand generalization.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here