Understanding and Mitigating Classification Errors Through Interpretable Token Patterns

18 Nov 2023  ·  Michael A. Hedderich, Jonas Fischer, Dietrich Klakow, Jilles Vreeken ·

State-of-the-art NLP methods achieve human-like performance on many tasks, but make errors nevertheless. Characterizing these errors in easily interpretable terms gives insight into whether a classifier is prone to making systematic errors, but also gives a way to act and improve the classifier. We propose to discover those patterns of tokens that distinguish correct and erroneous predictions as to obtain global and interpretable descriptions for arbitrary NLP classifiers. We formulate the problem of finding a succinct and non-redundant set of such patterns in terms of the Minimum Description Length principle. Through an extensive set of experiments, we show that our method, Premise, performs well in practice. Unlike existing solutions, it recovers ground truth, even on highly imbalanced data over large vocabularies. In VQA and NER case studies, we confirm that it gives clear and actionable insight into the systematic errors made by NLP classifiers.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here