Uncoupled isotonic regression via minimum Wasserstein deconvolution

27 Jun 2018  ·  Philippe Rigollet, Jonathan Weed ·

Isotonic regression is a standard problem in shape-constrained estimation where the goal is to estimate an unknown nondecreasing regression function $f$ from independent pairs $(x_i, y_i)$ where $\mathbb{E}[y_i]=f(x_i), i=1, \ldots n$. While this problem is well understood both statistically and computationally, much less is known about its uncoupled counterpart where one is given only the unordered sets $\{x_1, \ldots, x_n\}$ and $\{y_1, \ldots, y_n\}$. In this work, we leverage tools from optimal transport theory to derive minimax rates under weak moments conditions on $y_i$ and to give an efficient algorithm achieving optimal rates. Both upper and lower bounds employ moment-matching arguments that are also pertinent to learning mixtures of distributions and deconvolution.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here