Uncertainty-Guided Probabilistic Transformer for Complex Action Recognition

CVPR 2022  ·  Hongji Guo, Hanjing Wang, Qiang Ji ·

A complex action consists of a sequence of atomic actions that interact with each other over a relatively long period of time. This paper introduces a probabilistic model named Uncertainty-Guided Probabilistic Transformer (UGPT) for complex action recognition. The self-attention mechanism of a Transformer is used to capture the complex and long-term dynamics of the complex actions. By explicitly modeling the distribution of the attention scores, we extend the deterministic Transformer to a probabilistic Transformer in order to quantify the uncertainty of the prediction. The model prediction uncertainty is used to improve both training and inference. Specifically, we propose a novel training strategy by introducing a majority model and a minority model based on the epistemic uncertainty. During the inference, the prediction is jointly made by both models through a dynamic fusion strategy. Our method is validated on the benchmark datasets, including Breakfast Actions, MultiTHUMOS, and Charades. The experiment results show that our model achieves the state-of-the-art performance under both sufficient and insufficient data.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods