Uncertainty-aware Flexibility Envelope Prediction in Buildings with Controller-agnostic Battery Models

Buildings are a promising source of flexibility for the application of demand response. In this work, we introduce a novel battery model formulation to capture the state evolution of a single building. Being fully data-driven, the battery model identification requires one dataset from a period of nominal controller operation, and one from a period with flexibility requests, without making any assumptions on the underlying controller structure. We consider parameter uncertainty in the model formulation and show how to use risk measures to encode risk preferences of the user in robust uncertainty sets. Finally, we demonstrate the uncertainty-aware prediction of flexibility envelopes for a building simulation model from the Python library Energym.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods