Ultra-Reliable and Low-Latency Vehicular Communication: An Active Learning Approach

27 Nov 2019  ·  Mohamed K. Abdel-Aziz, Sumudu Samarakoon, Mehdi Bennis, Walid Saad ·

In this letter, an age of information (AoI)-aware transmission power and resource block (RB) allocation technique for vehicular communication networks is proposed. Due to the highly dynamic nature of vehicular networks, gaining a prior knowledge about the network dynamics, i.e., wireless channels and interference, in order to allocate resources, is challenging. Therefore, to effectively allocate power and RBs, the proposed approach allows the network to actively learn its dynamics by balancing a tradeoff between minimizing the probability that the vehicles' AoI exceeds a predefined threshold and maximizing the knowledge about the network dynamics. In this regard, using a Gaussian process regression (GPR) approach, an online decentralized strategy is proposed to actively learn the network dynamics, estimate the vehicles' future AoI, and proactively allocate resources. Simulation results show a significant improvement in terms of AoI violation probability, compared to several baselines, with a reduction of at least 50%.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods