Ultra-fast quantum-well infared photodetectors operating at 10μm with flat response up to 70GHz at room temperature

1 Jul 2020  ·  M. Hakl, Q. Y. Lin, S. Lepillet, M. Billet, J-F. Lampin, S. Pirotta, R. Colombelli, W. J. Wan, J. C. Cao, H. Li, E. Peytavit, S. Barbieri ·

III-V semiconductor mid-infrared photodetectors based on intersubband transitions hold a great potential for ultra-high-speed operation up to several hundreds of GHz. In this work we exploit a ~350nm-thick GaAs/Al0.2Ga0.8As multi-quantum-well heterostructure to demonstrate heterodyne detection at 10um wavelength with a nearly flat frequency response up to 70GHz at room temperature, solely limited by the measurement system bandwidth. This is the broadest RF-bandwidth reported to date for a quantum-well mid-infrared photodetector. Responsivities of 0.15A/W and 1.5A/W are obtained at 300K and 77K respectively. To allow ultrafast operation and illumination at normal incidence, the detector consists of a 50Ohm coplanar waveguide, monolithically integrated with a 2D-array of sub-wavelength antennas, electrically interconnected by suspended wires. With this device architecture we obtain a parasitic capacitance of ~30fF, corresponding to the static capacitance of the antennas, yielding a RC-limited 3dB cutoff frequency >150GHz at 300K, extracted with a small-signal equivalent circuit model. Using this model, we quantitively reproduce the detector frequency response and find intrinsic roll-off time constants as low as 1ps at room temperature.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Applied Physics Instrumentation and Detectors Optics