UAV-Aided Post-Disaster Cellular Networks: A Novel Stochastic Geometry Approach

19 Feb 2023  ·  Maurilio Matracia, Mustafa A. Kishk, Mohamed-Slim Alouini ·

Motivated by the need for ubiquitous and reliable communications in post-disaster emergency management systems (EMSs), we hereby present a novel and efficient stochastic geometry (SG) framework. This mathematical model is specifically designed to evaluate the quality of service (QoS) experienced by a typical ground user equipment (UE) residing either inside or outside a generic area affected by a calamity. In particular, we model the functioning terrestrial base stations (TBSs) as an inhomogeneous Poisson point process (IPPP), and assume that a given number of uniformly distributed unmanned aerial vehicles (UAVs) equipped with cellular transceivers is deployed in order to compensate for the damage suffered by some of the existing TBSs. The downlink (DL) coverage probability is then derived based on the maximum average received power association policy and the assumption of Nakagami-m fading conditions for all wireless links. The proposed numerical results show insightful trends in terms of coverage probability, depending on: distance of the UE from the disaster epicenter, disaster radius, quality of resilience (QoR) of the terrestrial network, and fleet of deployed ad-hoc aerial base stations (ABSs). The aim of this paper is therefore to prove the effectiveness of vertical heterogeneous networks (VHetNets) in emergency scenarios, which can both stimulate the involved authorities for their implementation and inspire researchers to further investigate related problems.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods