U-SWIM: Universal Selective Write-Verify for Computing-in-Memory Neural Accelerators

11 Dec 2023  ·  Zheyu Yan, Xiaobo Sharon Hu, Yiyu Shi ·

Architectures that incorporate Computing-in-Memory (CiM) using emerging non-volatile memory (NVM) devices have become strong contenders for deep neural network (DNN) acceleration due to their impressive energy efficiency. Yet, a significant challenge arises when using these emerging devices: they can show substantial variations during the weight-mapping process. This can severely impact DNN accuracy if not mitigated. A widely accepted remedy for imperfect weight mapping is the iterative write-verify approach, which involves verifying conductance values and adjusting devices if needed. In all existing publications, this procedure is applied to every individual device, resulting in a significant programming time overhead. In our research, we illustrate that only a small fraction of weights need this write-verify treatment for the corresponding devices and the DNN accuracy can be preserved, yielding a notable programming acceleration. Building on this, we introduce USWIM, a novel method based on the second derivative. It leverages a single iteration of forward and backpropagation to pinpoint the weights demanding write-verify. Through extensive tests on diverse DNN designs and datasets, USWIM manifests up to a 10x programming acceleration against the traditional exhaustive write-verify method, all while maintaining a similar accuracy level. Furthermore, compared to our earlier SWIM technique, USWIM excels, showing a 7x speedup when dealing with devices exhibiting non-uniform variations.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here