Tuning hyperparameters of doublet-detection methods for single-cell RNA sequencing data

1 Nov 2022  ·  Nan Miles Xi, Angelos Vasilopoulos ·

The existence of doublets in single-cell RNA sequencing (scRNA-seq) data poses a great challenge in downstream data analysis. Computational doublet-detection methods have been developed to remove doublets from scRNA-seq data. Yet, the default hyperparameter settings of those methods may not provide optimal performance. Here, we propose a strategy to tune hyperparameters for a cutting-edge doublet-detection method. We utilize a full factorial design to explore the relationship between hyperparameters and detection accuracy on 16 real scRNA-seq datasets. The optimal hyperparameters are obtained by a response surface model and convex optimization. We show that the optimal hyperparameters provide top performance across scRNA-seq datasets under various biological conditions. Our tuning strategy can be applied to other computational doublet-detection methods. It also offers insights into hyperparameter tuning for broader computational methods in scRNA-seq data analysis.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here