Transferrable End-to-End Learning for Protein Interface Prediction

27 Sep 2018  ·  Raphael J. L. Townshend, Rishi Bedi, Ron O. Dror ·

While there has been an explosion in the number of experimentally determined, atomically detailed structures of proteins, how to represent these structures in a machine learning context remains an open research question. In this work we demonstrate that representations learned from raw atomic coordinates can outperform hand-engineered structural features while displaying a much higher degree of transferrability. To do so, we focus on a central problem in biology: predicting how proteins interact with one another—that is, which surfaces of one protein bind to which surfaces of another protein. We present Siamese Atomic Surfacelet Network (SASNet), the first end-to-end learning method for protein interface prediction. Despite using only spatial coordinates and identities of atoms as inputs, SASNet outperforms state-of-the-art methods that rely on hand-engineered, high-level features. These results are particularly striking because we train the method entirely on a significantly biased data set that does not account for the fact that proteins deform when binding to one another. Demonstrating the first successful application of transfer learning to atomic-level data, our network maintains high performance, without retraining, when tested on real cases in which proteins do deform.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here