Training robust and generalizable quantum models

20 Nov 2023  ·  Julian Berberich, Daniel Fink, Daniel Pranjić, Christian Tutschku, Christian Holm ·

Adversarial robustness and generalization are both crucial properties of reliable machine learning models. In this letter, we study these properties in the context of quantum machine learning based on Lipschitz bounds. We derive parameter-dependent Lipschitz bounds for quantum models with trainable encoding, showing that the norm of the data encoding has a crucial impact on the robustness against data perturbations. Further, we derive a bound on the generalization error which explicitly involves the parameters of the data encoding. Our theoretical findings give rise to a practical strategy for training robust and generalizable quantum models by regularizing the Lipschitz bound in the cost. Further, we show that, for fixed and non-trainable encodings, as those frequently employed in quantum machine learning, the Lipschitz bound cannot be influenced by tuning the parameters. Thus, trainable encodings are crucial for systematically adapting robustness and generalization during training. The practical implications of our theoretical findings are illustrated with numerical results.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here