Training Fully Connected Neural Networks is $\exists\mathbb{R}$-Complete

We consider the problem of finding weights and biases for a two-layer fully connected neural network to fit a given set of data points as well as possible, also known as EmpiricalRiskMinimization. Our main result is that the associated decision problem is $\exists\mathbb{R}$-complete, that is, polynomial-time equivalent to determining whether a multivariate polynomial with integer coefficients has any real roots. Furthermore, we prove that algebraic numbers of arbitrarily large degree are required as weights to be able to train some instances to optimality, even if all data points are rational. Our result already applies to fully connected instances with two inputs, two outputs, and one hidden layer of ReLU neurons. Thereby, we strengthen a result by Abrahamsen, Kleist and Miltzow [NeurIPS 2021]. A consequence of this is that a combinatorial search algorithm like the one by Arora, Basu, Mianjy and Mukherjee [ICLR 2018] is impossible for networks with more than one output dimension, unless $\mathsf{NP}=\exists\mathbb{R}$.

PDF Abstract NeurIPS 2023 PDF NeurIPS 2023 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here