Training-Free Generalization on Heterogeneous Tabular Data via Meta-Representation

31 Oct 2023  ·  Han-Jia Ye, Qi-Le Zhou, De-Chuan Zhan ·

Tabular data is prevalent across various machine learning domains. Yet, the inherent heterogeneities in attribute and class spaces across different tabular datasets hinder the effective sharing of knowledge, limiting a tabular model to benefit from other datasets. In this paper, we propose Tabular data Pre-Training via Meta-representation (TabPTM), which allows one tabular model pre-training on a set of heterogeneous datasets. Then, this pre-trained model can be directly applied to unseen datasets that have diverse attributes and classes without additional training. Specifically, TabPTM represents an instance through its distance to a fixed number of prototypes, thereby standardizing heterogeneous tabular datasets. A deep neural network is then trained to associate these meta-representations with dataset-specific classification confidences, endowing TabPTM with the ability of training-free generalization. Experiments validate that TabPTM achieves promising performance in new datasets, even under few-shot scenarios.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here