Training Deep Networks without Learning Rates Through Coin Betting

NeurIPS 2017  ยท  Francesco Orabona, Tatiana Tommasi ยท

Deep learning methods achieve state-of-the-art performance in many application scenarios. Yet, these methods require a significant amount of hyperparameters tuning in order to achieve the best results. In particular, tuning the learning rates in the stochastic optimization process is still one of the main bottlenecks. In this paper, we propose a new stochastic gradient descent procedure for deep networks that does not require any learning rate setting. Contrary to previous methods, we do not adapt the learning rates nor we make use of the assumed curvature of the objective function. Instead, we reduce the optimization process to a game of betting on a coin and propose a learning-rate-free optimal algorithm for this scenario. Theoretical convergence is proven for convex and quasi-convex functions and empirical evidence shows the advantage of our algorithm over popular stochastic gradient algorithms.

PDF Abstract NeurIPS 2017 PDF NeurIPS 2017 Abstract

Datasets


Results from the Paper


Task Dataset Model Metric Name Metric Value Global Rank Benchmark
Stochastic Optimization MNIST MLP NLL 0.0541 # 1

Methods


No methods listed for this paper. Add relevant methods here