Training Deep Gaussian Processes using Stochastic Expectation Propagation and Probabilistic Backpropagation

Deep Gaussian processes (DGPs) are multi-layer hierarchical generalisations of Gaussian processes (GPs) and are formally equivalent to neural networks with multiple, infinitely wide hidden layers. DGPs are probabilistic and non-parametric and as such are arguably more flexible, have a greater capacity to generalise, and provide better calibrated uncertainty estimates than alternative deep models. The focus of this paper is scalable approximate Bayesian learning of these networks. The paper develops a novel and efficient extension of probabilistic backpropagation, a state-of-the-art method for training Bayesian neural networks, that can be used to train DGPs. The new method leverages a recently proposed method for scaling Expectation Propagation, called stochastic Expectation Propagation. The method is able to automatically discover useful input warping, expansion or compression, and it is therefore is a flexible form of Bayesian kernel design. We demonstrate the success of the new method for supervised learning on several real-world datasets, showing that it typically outperforms GP regression and is never much worse.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here