Training Data Protection with Compositional Diffusion Models

2 Aug 2023  ·  Aditya Golatkar, Alessandro Achille, Ashwin Swaminathan, Stefano Soatto ·

We introduce Compartmentalized Diffusion Models (CDM), a method to train different diffusion models (or prompts) on distinct data sources and arbitrarily compose them at inference time. The individual models can be trained in isolation, at different times, and on different distributions and domains and can be later composed to achieve performance comparable to a paragon model trained on all data simultaneously. Furthermore, each model only contains information about the subset of the data it was exposed to during training, enabling several forms of training data protection. In particular, CDMs enable perfect selective forgetting and continual learning for large-scale diffusion models, allow serving customized models based on the user's access rights. Empirically the quality (FID) of the class-conditional CDMs (8-splits) is within 10% (on fine-grained vision datasets) of a monolithic model (no splits), and allows (8x) faster forgetting compared monolithic model with a maximum FID increase of 1%. When applied to text-to-image generation, CDMs improve alignment (TIFA) by 14.33% over a monolithic model trained on MSCOCO. CDMs also allow determining the importance of a subset of the data (attribution) in generating particular samples, and reduce memorization.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods