Tracking by Instance Detection: A Meta-Learning Approach

We consider the tracking problem as a special type of object detection problem, which we call instance detection. With proper initialization, a detector can be quickly converted into a tracker by learning the new instance from a single image. We find that model-agnostic meta-learning (MAML) offers a strategy to initialize the detector that satisfies our needs. We propose a principled three-step approach to build a high-performance tracker. First, pick any modern object detector trained with gradient descent. Second, conduct offline training (or initialization) with MAML. Third, perform domain adaptation using the initial frame. We follow this procedure to build two trackers, named Retina-MAML and FCOS-MAML, based on two modern detectors RetinaNet and FCOS. Evaluations on four benchmarks show that both trackers are competitive against state-of-the-art trackers. On OTB-100, Retina-MAML achieves the highest ever AUC of 0.712. On TrackingNet, FCOS-MAML ranks the first on the leader board with an AUC of 0.757 and the normalized precision of 0.822. Both trackers run in real-time at 40 FPS.

PDF Abstract CVPR 2020 PDF CVPR 2020 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods