Towards Optimal Correlational Object Search

19 Oct 2021  ·  Kaiyu Zheng, Rohan Chitnis, Yoonchang Sung, George Konidaris, Stefanie Tellex ·

In realistic applications of object search, robots will need to locate target objects in complex environments while coping with unreliable sensors, especially for small or hard-to-detect objects. In such settings, correlational information can be valuable for planning efficiently. Previous approaches that consider correlational information typically resort to ad-hoc, greedy search strategies. We introduce the Correlational Object Search POMDP (COS-POMDP), which models correlations while preserving optimal solutions with a reduced state space. We propose a hierarchical planning algorithm to scale up COS-POMDPs for practical domains. Our evaluation, conducted with the AI2-THOR household simulator and the YOLOv5 object detector, shows that our method finds objects more successfully and efficiently compared to baselines,particularly for hard-to-detect objects such as srub brush and remote control.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here