Towards Neural Network-based Reasoning

22 Aug 2015  ·  Baolin Peng, Zhengdong Lu, Hang Li, Kam-Fai Wong ·

We propose Neural Reasoner, a framework for neural network-based reasoning over natural language sentences. Given a question, Neural Reasoner can infer over multiple supporting facts and find an answer to the question in specific forms. Neural Reasoner has 1) a specific interaction-pooling mechanism, allowing it to examine multiple facts, and 2) a deep architecture, allowing it to model the complicated logical relations in reasoning tasks. Assuming no particular structure exists in the question and facts, Neural Reasoner is able to accommodate different types of reasoning and different forms of language expressions. Despite the model complexity, Neural Reasoner can still be trained effectively in an end-to-end manner. Our empirical studies show that Neural Reasoner can outperform existing neural reasoning systems with remarkable margins on two difficult artificial tasks (Positional Reasoning and Path Finding) proposed in [8]. For example, it improves the accuracy on Path Finding(10K) from 33.4% [6] to over 98%.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here