Towards Intelligent Load Balancing in Data Centers

27 Oct 2021  ·  Zhiyuan Yao, Yoann Desmouceaux, Mark Townsley, Thomas Heide Clausen ·

Network load balancers are important components in data centers to provide scalable services. Workload distribution algorithms are based on heuristics, e.g., Equal-Cost Multi-Path (ECMP), Weighted-Cost Multi-Path (WCMP) or naive machine learning (ML) algorithms, e.g., ridge regression. Advanced ML-based approaches help achieve performance gain in different networking and system problems. However, it is challenging to apply ML algorithms on networking problems in real-life systems. It requires domain knowledge to collect features from low-latency, high-throughput, and scalable networking systems, which are dynamic and heterogenous. This paper proposes Aquarius to bridge the gap between ML and networking systems and demonstrates its usage in the context of network load balancers. This paper demonstrates its ability of conducting both offline data analysis and online model deployment in realistic systems. The results show that the ML model trained and deployed using Aquarius improves load balancing performance yet they also reveals more challenges to be resolved to apply ML for networking systems.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here