Towards Federated Learning on Time-Evolving Heterogeneous Data

25 Dec 2021  ·  Yongxin Guo, Tao Lin, Xiaoying Tang ·

Federated Learning (FL) is a learning paradigm that protects privacy by keeping client data on edge devices. However, optimizing FL in practice can be difficult due to the diversity and heterogeneity of the learning system. Despite recent research efforts to improve the optimization of heterogeneous data, the impact of time-evolving heterogeneous data in real-world scenarios, such as changing client data or intermittent clients joining or leaving during training, has not been studied well. In this work, we propose Continual Federated Learning (CFL), a flexible framework for capturing the time-evolving heterogeneity of FL. CFL can handle complex and realistic scenarios, which are difficult to evaluate in previous FL formulations, by extracting information from past local data sets and approximating local objective functions. We theoretically demonstrate that CFL methods have a faster convergence rate than FedAvg in time-evolving scenarios, with the benefit depending on approximation quality. Through experiments, we show that our numerical findings match the convergence analysis and that CFL methods significantly outperform other state-of-the-art FL baselines.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here