Towards Faithful Neural Network Intrinsic Interpretation with Shapley Additive Self-Attribution

27 Sep 2023  ·  Ying Sun, HengShu Zhu, Hui Xiong ·

Self-interpreting neural networks have garnered significant interest in research. Existing works in this domain often (1) lack a solid theoretical foundation ensuring genuine interpretability or (2) compromise model expressiveness. In response, we formulate a generic Additive Self-Attribution (ASA) framework. Observing the absence of Shapley value in Additive Self-Attribution, we propose Shapley Additive Self-Attributing Neural Network (SASANet), with theoretical guarantees for the self-attribution value equal to the output's Shapley values. Specifically, SASANet uses a marginal contribution-based sequential schema and internal distillation-based training strategies to model meaningful outputs for any number of features, resulting in un-approximated meaningful value function. Our experimental results indicate SASANet surpasses existing self-attributing models in performance and rivals black-box models. Moreover, SASANet is shown more precise and efficient than post-hoc methods in interpreting its own predictions.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here