Towards Control-Centric Representations in Reinforcement Learning from Images

25 Oct 2023  ·  Chen Liu, Hongyu Zang, Xin Li, Yong Heng, Yifei Wang, Zhen Fang, Yisen Wang, Mingzhong Wang ·

Image-based Reinforcement Learning is a practical yet challenging task. A major hurdle lies in extracting control-centric representations while disregarding irrelevant information. While approaches that follow the bisimulation principle exhibit the potential in learning state representations to address this issue, they still grapple with the limited expressive capacity of latent dynamics and the inadaptability to sparse reward environments. To address these limitations, we introduce ReBis, which aims to capture control-centric information by integrating reward-free control information alongside reward-specific knowledge. ReBis utilizes a transformer architecture to implicitly model the dynamics and incorporates block-wise masking to eliminate spatiotemporal redundancy. Moreover, ReBis combines bisimulation-based loss with asymmetric reconstruction loss to prevent feature collapse in environments with sparse rewards. Empirical studies on two large benchmarks, including Atari games and DeepMind Control Suit, demonstrate that ReBis has superior performance compared to existing methods, proving its effectiveness.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here