Towards Backward-Compatible Continual Learning of Image Compression

29 Feb 2024  ·  Zhihao Duan, Ming Lu, Justin Yang, Jiangpeng He, Zhan Ma, Fengqing Zhu ·

This paper explores the possibility of extending the capability of pre-trained neural image compressors (e.g., adapting to new data or target bitrates) without breaking backward compatibility, the ability to decode bitstreams encoded by the original model. We refer to this problem as continual learning of image compression. Our initial findings show that baseline solutions, such as end-to-end fine-tuning, do not preserve the desired backward compatibility. To tackle this, we propose a knowledge replay training strategy that effectively addresses this issue. We also design a new model architecture that enables more effective continual learning than existing baselines. Experiments are conducted for two scenarios: data-incremental learning and rate-incremental learning. The main conclusion of this paper is that neural image compressors can be fine-tuned to achieve better performance (compared to their pre-trained version) on new data and rates without compromising backward compatibility. Our code is available at https://gitlab.com/viper-purdue/continual-compression

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here