Towards Antisymmetric Neural Ansatz Separation

5 Aug 2022  ·  Aaron Zweig, Joan Bruna ·

We study separations between two fundamental models (or \emph{Ans\"atze}) of antisymmetric functions, that is, functions $f$ of the form $f(x_{\sigma(1)}, \ldots, x_{\sigma(N)}) = \text{sign}(\sigma)f(x_1, \ldots, x_N)$, where $\sigma$ is any permutation. These arise in the context of quantum chemistry, and are the basic modeling tool for wavefunctions of Fermionic systems. Specifically, we consider two popular antisymmetric Ans\"atze: the Slater representation, which leverages the alternating structure of determinants, and the Jastrow ansatz, which augments Slater determinants with a product by an arbitrary symmetric function. We construct an antisymmetric function in $N$ dimensions that can be efficiently expressed in Jastrow form, yet provably cannot be approximated by Slater determinants unless there are exponentially (in $N^2$) many terms. This represents the first explicit quantitative separation between these two Ans\"atze.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here