Towards an ASP-Based Architecture for Autonomous UAVs in Dynamic Environments (Extended Abstract)

21 May 2014  ·  Marcello Balduccini, William C. Regli, Duc N. Nguyen ·

Traditional AI reasoning techniques have been used successfully in many domains, including logistics, scheduling and game playing. This paper is part of a project aimed at investigating how such techniques can be extended to coordinate teams of unmanned aerial vehicles (UAVs) in dynamic environments. Specifically challenging are real-world environments where UAVs and other network-enabled devices must communicate to coordinate -- and communication actions are neither reliable nor free. Such network-centric environments are common in military, public safety and commercial applications, yet most research (even multi-agent planning) usually takes communications among distributed agents as a given. We address this challenge by developing an agent architecture and reasoning algorithms based on Answer Set Programming (ASP). Although ASP has been used successfully in a number of applications, to the best of our knowledge this is the first practical application of a complete ASP-based agent architecture. It is also the first practical application of ASP involving a combination of centralized reasoning, decentralized reasoning, execution monitoring, and reasoning about network communications.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here